Vegetables for nonpickle use. Take samples through the top or side whole.

GENERAL PROCEDURE

1. Collection, Storage, and Preparation of Pine Samples

Washington, D.C.
American Public Health Assoc.
B. O. Sells, Ed.

Vegetable and Pickled Products

II. BRINED AND SALTED VEGETABLES

Vegetables and Pickled Products

CHAPTER III

10A.
I. Preparation of the Sample

Samples preserved with the above chemicals are used for human consumption and should be so marked.

II. Microscopic Examination

Microscopic examination of dried samples for bacteria and yeasts is required.

A. Technique for Bacteria

B. Technique for Yeasts

III. Storage of Samples

With a trained ice pick, select a representative portion of each composite sample. Use forceps to place 10 grams of each composite sample into a 10 ml test tube. Add 10 ml of 1%Tween 80 to each tube. Mix well and incubate at 37°C for 24 hours. After incubation, the solution should be clear. If necessary, to ship the samples, use a sterile vacuum pump to remove air from the tubes.
I. Determination of Salt Content of Pickle

A. Procedure

1. To determine the salt content of pickle, you need to prepare a solution of sodium chloride. Mix 100 ml of a 10% sodium chloride solution with 20 ml of a 10% solution of formaldehyde.

2. Add 10 ml of the prepared solution to 100 ml of the pickle. Mix well and let it stand for 24 hours.

3. After 24 hours, filter the solution through a Whatman No. 1 filter paper.

4. Weigh the filter paper and record the weight.

5. Repeat the process with different pickle samples to get accurate results.

B. Calculations

To calculate the salt content, use the following formula:

\[
\text{Salt content} = \frac{\text{Weight of salt}}{\text{Volume of pickle sample}} \times 100
\]

II. Determination of Yeast Activity

A. Procedure

1. Prepare a solution of sodium nitrate by dissolving 50 g of sodium nitrate in 1 liter of distilled water.

2. Add 10 ml of the solution to 100 ml of the pickle.

3. Incubate the mixture at 30°C for 24 hours.

4. Filter the mixture and count the yeast cells using a microscope.

B. Calculations

To calculate the yeast count, use the following formula:

\[
\text{Yeast count} = \frac{\text{Number of yeast cells counted}}{\text{Volume of sample}} \times 1000
\]
B. Finished Pickle Products

Pickle Use.

Pickles are classified into various types depending on the type of fermentation, the type of cucumber, and the type of vinegar. The significance of the presence of the salt-fermented cucumber and olive oil is hard to overlook. When selecting a pickle for use, we recommend the use of a medium-sweet pickle rather than a very sour one. The texture of the pickle should be firm and crisp, and the flavor should be well-balanced. The use of a good quality pickle can enhance the flavor of a dish and make it more enjoyable. Pickles are used in a variety of dishes, from sandwiches to salads, and are a popular condiment in many cuisines around the world. They are often served as a side dish or used as a garnish for various dishes. Pickles are also great for preserving food, as they can help extend the shelf life of vegetables. By understanding the different types of pickles available and their uses, we can make the most of this versatile food item.
B. Frozen Vegetables

Products used in preparation of soup, mixed vegetables, and stews. These vegetables are corn, snap beans, carrots, and celery. These vegetables are cut into 1-inch cubes and added to the pot of boiling water. The vegetable is then removed, drained, and added to the prepared soup.

C. Pasteurized Types of Pickle

Some are used to such growth, and in advanced stages, the vegetable may be extracted and the vegetables used for pickling. When the vegetables are ready, they are placed in a brine solution and heated to a temperature of 120°F. The vegetable is then removed, drained, and placed in jars or cans, which are then sealed and cooled to prevent spoilage.

Extraction of the pickle is done by the following method: The pickle is placed in a pot of boiling water and heated to a temperature of 120°F. The vegetable is then removed, drained, and placed in jars or cans, which are then sealed and cooled to prevent spoilage.

The efficiency of lactic acid is essential to the successful preparation of vegetables for pickling. Since the acidity of the brine is determined during the pickling process, it is important to maintain the correct pH level to ensure the preservation of the vegetable.

The significance of osmotic pressure in the successful preparation of vegetables for pickling is essential to the production of high-quality products. The use of appropriate osmotic pressure levels can help to maintain the desirable characteristics of the pickles, such as color, texture, and flavor.

In conclusion, the successful preparation of vegetables for pickling requires careful attention to the process, including the use of appropriate osmotic pressure levels, to ensure the preservation of the vegetable.

BRINED, SALTLED, PICKLED VEGETABLES

In conclusion, the successful preparation of vegetables for pickling requires careful attention to the process, including the use of appropriate osmotic pressure levels, to ensure the preservation of the vegetable.
Table 1—Guide to the Bacteriological Examination of Salted, Brined, and Pickled Vegetable Products

<table>
<thead>
<tr>
<th>Microbial Group Involved</th>
<th>Culture Medium</th>
<th>Classes of Products in Which Microbial Group Is Likely to Be Present *</th>
<th>Remarks Concerning Microbial Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total count</td>
<td>Nutritive caseinate agar (46)</td>
<td>All classes of products IA and B, and IIA and B</td>
<td>For determination of general microbial populations. In pasteurized products helps to indicate the effectiveness of the treatment.</td>
</tr>
<tr>
<td>Acid-forming bacteria</td>
<td>Nutritive caseinate agar (46) V-8 Medium (72)</td>
<td>IA: Fermenting salt-stock vegetables and genuine dills. IB: Finished pickle products. IC: Pasteurized pickle products.</td>
<td>Acid fermentation. Salt-tolerant up to 15 per cent; not likely to be found in brined and salted vegetables above this concentration. (IIA and B)</td>
</tr>
<tr>
<td>Salt-tolerant cocci</td>
<td>Nutritive caseinate agar (46)</td>
<td>II: Brined and salted vegetables for nonpickle use; also, other high salt vegetables without appreciable acidity.</td>
<td>No outstanding characteristics of fermentation reported. Group salt-tolerant but sensitive to acid. Can grow at refrigerator temperature (1.7°C) at approximately 10 per cent salt.</td>
</tr>
<tr>
<td>Coliform bacteria</td>
<td>Brilliant green lactose bile agar (12), violet red bile agar (73), or deoxycholate agar (16)</td>
<td>IA: Fermenting salt-stock vegetables and genuine dills. IIA and B: Brined and salted vegetables for nonpickle use.</td>
<td>Gaseous fermentation. Group salt-tolerant but not acid-tolerant. Most likely absent from finished pickles due to acid content; same is true for brines when appreciable acid is present.</td>
</tr>
</tbody>
</table>

* Refer to outline for more detailed classification of products listed under IA, B, and C, and IIA and B.

Table 1—(Continued)

<table>
<thead>
<tr>
<th>Microbial Group Involved</th>
<th>Culture Medium</th>
<th>Classes of Products in Which Microbial Group Is Likely to Be Present *</th>
<th>Remarks Concerning Microbial Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obligate halophiles</td>
<td>Liver broth plus salt (33)</td>
<td>IIA and B: Brined and salted vegetables for nonpickle use. Also, in other vegetable brines at high salt concentration.</td>
<td>Gaseous fermentation. Group requires 5–15 per cent salt in culture medium and reduced oxygen tension. Sensitive to acid. General information on behavior not well known.</td>
</tr>
<tr>
<td>Fermentative yeasts, film yeasts and molds</td>
<td>Dextrose agar (acidified) (17) Dextrose broth plus salt † (19)</td>
<td>All classes of products (IA, B, and C, and IIA, B), for yeasts. Molds and film yeasts on liquid surface of products exposed to air and sheltered from sunlight.</td>
<td>Yeasts: gaseous fermentation; acid- and salt-tolerant. Molds and film yeasts: acid- and salt-tolerant; both groups utilize acid of products and require free oxygen for growth.</td>
</tr>
<tr>
<td>Butyric acid group</td>
<td>Liver broth medium without salt (32)</td>
<td>Uncommon in brined and salted vegetables; examination should be made if malodorous fermentation is detected.</td>
<td>Causes malodorous, gaseous fermentation. Not particularly acid- or salt-tolerant. Active fermentations rare in properly brined or salted vegetables.</td>
</tr>
</tbody>
</table>

* Refer to outline for more detailed classification of products listed under IA, B, and C, and IIA and B.
† For culturing film forming yeasts in general.
II. V. 8-MEDIUM (72)

- Seed-potato agar of the potato group
- do not produce colonies of color; are not recorded as true
- should be expressed that deep colonies of color are not recorded as true
- in high potato agar, colonies increase in color. In high agar, colonies increase in size, while color is colorless.
- cannot be considered a differential medium
- must be considered a differential medium
- cannot be considered a differential medium
- must be considered a differential medium
- cannot be considered a differential medium

Discussion on Use of Culture Media and Types of Microorganisms

Vegetable products in the examination of certain products, and pickled vegetables and
A summary of the biochemical methods described herein is

Summary of Procedure

The medium is shown to be sensitive to a number of substances.

- Growth of the medium is shown to be sensitive to a number of substances.
- Growth of the medium is shown to be sensitive to a number of substances.
- Growth of the medium is shown to be sensitive to a number of substances.
- Growth of the medium is shown to be sensitive to a number of substances.
REFERENCES

and developmental phenomena would indicate that these types of bacteria were responsibe for the
positive reactions. Positive reactions in this medium would indicate that the bacteria were
responsible for the positive reactions. These bacteria were found to be present in the presence of
12. Acknowledgments. This research was supported by the National Institutes of Health Grant
11. Communication in competitive media with very few growing colonies of the
strain of E. coli. In the absence of growth, the bacteria are not detected by this medium.

A. LIVER BROTH MEDIUM (32)

B. SALTED, PICKLED VEGETABLES

C. BRENNED, SALTED, PICKLED VEGETABLES

D. LACTOSE AGAR (32)

E. DEXTROSE AGAR (32)

F. BRIELENT, GREEN LACTOSE BLE AGAR (32)
A. Underprocessing

Process by reason of a faulty seal
Exposure to the concomitance of the product after an adequate heat process all bacteria capable of subsequent growth in the product. Underprocessing is the failure to destroy the microbially spoilage of canned foods is the either to underprocessing.

1. GENERAL CONSIDERATIONS

of food

quickly immersed of the 20°C C. Intubation need for most of the other types.

37°C is correct but in most cases in the interest of obtaining results in

appropriate temperature is not correct and must be considered together. The chapter differs from those in most other chapters in that subject category. It is

material, microbiological, chemical, physical, and general introduction. The control of conditions, both internal and external, and in general communication makes it necessary that methods be available for the purpose.

The continuous quantity of canned foods that is manufactured and

CANNED FOODS

CHAPTER IV
Recommended Methods
for the
Microbiological Examination
of
Foods

The Subcommittee on Methods for the Microbiological Examination of Foods has prepared this report. It has been reviewed by the Coordinating Committee on Laboratory Methods and recommended for publication. Publication has been authorized by the Committee on Evaluation and Standards of the American Public Health Association.

Publication Office
American Public Health Association, Inc.
1790 Broadway
New York 19, N. Y.